

#### **Acoustics of timber buildings**

Assist. prof. Rok Prislan, PhD, MSc Engineering Acoustics Head of research department – Buildings rok.prislan@innorenew.eu

Innsbruck, December 4th, 2024

## Education and vocational training

 Federal Ministry Republic of Austria Agriculture, Forestry, Regions and Water Management







#### SUMMARY



WOOD IN ACOUSTICS

THE ROOM ACOUSTIC PERSPECTIVE

THE BUILDING ACOUSTIC PERSPECTIVE

LIVE EXPERIMENT



#### **SPEAKER PRESENTATION**



Assist. Prof. Rok Prislan, PhD Head of research department - Buildings InnoRenewCoE

Field of expertise: Acoustics



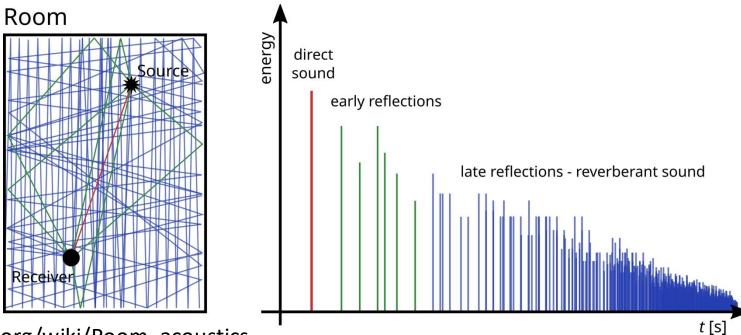
# **WOOD IN ACOUSTICS**

#### WOOD IN ACOUSTICS



- Wood has **traditionally** been the material of choice in room acoustics.
- It is a **structural** material and the **finishing** layer at once with several **processing** options.
- It is easy to create **rich geometric shapes**, while in combination with other materials high **sound-absorbing** properties can be achieved.



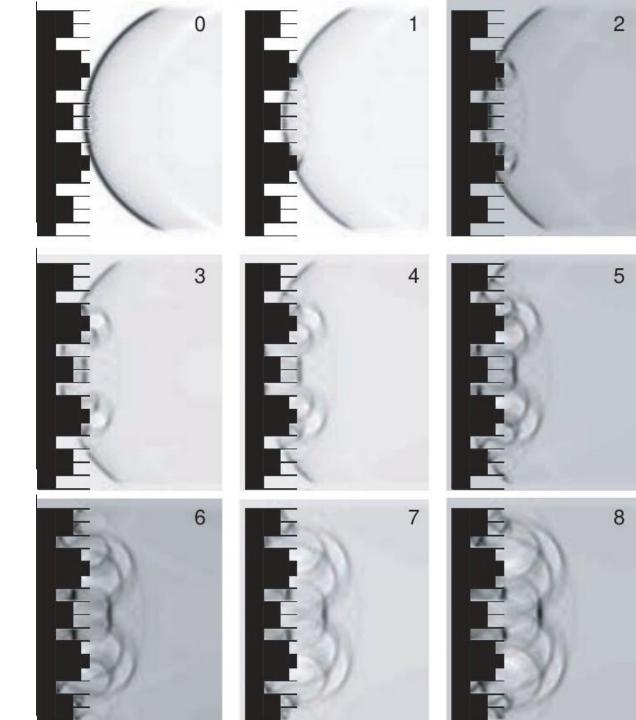



# **ROOM ACOUSTICS**



#### **SOUND IN ROOMS**

- **Room acoustics** is a subfield of acoustics dealing with the behavior of sound in enclosed or partiallyenclosed spaces [1].
- In addition to **direct sound**, there are also **reflections** at the boundaries of a room.
- We distinguish between **early** and late **reflections**.




[1] https://en.wikipedia.org/wiki/Room\_acoustics

#### **SOUND REFLECTION**

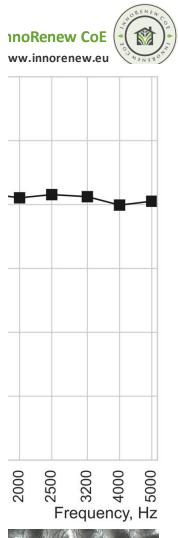
- On rigid flat surfaces waves specularly reflect.
- On surfaces of complex geometries, waves are scattered.
- When reflected, the energy of the sound wave is reduced (partially absorbed).

[2] T. J. Cox, P. D'Antonio, *Acoustic Absorbers and Diffusers: Theory, Design and Application* (2009)



## SOUND ABORPTION

The energy loss at boundary reflection

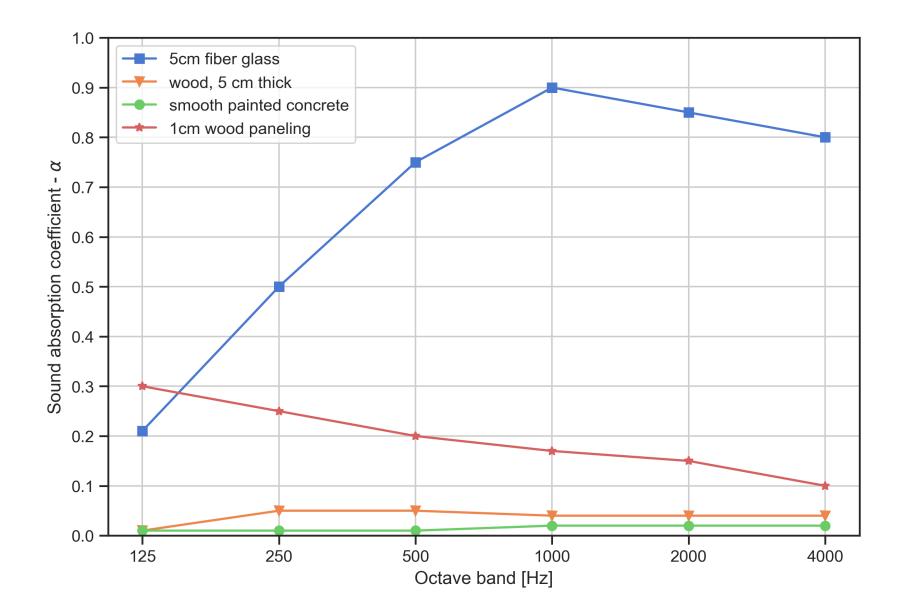

The most common sound absorbing materials are **porous**.

# Sound **propagates into the structure** of the material, where sound energy converting it into heat (viscous losses energy dissipation).

The sound absorbing properties of materials are characterized by their **sound absorption coefficient**, **α**:

- "The fraction of the incident acoustic power arriving at the boundary that is not reflected" [3], i.e. is absorbed.
- Ranges from 0-1 (perfect reflector/absorber)
- Is a frequency-dependent parameter.

|                                                                                                                                                         | Frequency (Hz) |              |                |                |                |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------|----------------|----------------|----------------|
| Material                                                                                                                                                | 125            | 250          | 500            | 1000           | 2000           | 4000           |
| Acoustics plaster, 40 mm thick <sup>22</sup><br>Acoustics plaster, 68 mm thick <sup>22</sup>                                                            | 0.31<br>0.47   | 0.55<br>0.74 | 0.84<br>0.76   | 0.78<br>0.65   | 0.71<br>0.62   | 0.54<br>0.49   |
| Plasterboard                                                                                                                                            |                | 12 0.00      |                |                |                |                |
| Gypsum board, 1.27 cm nailed to studs with $4.1 \text{ m c-t-}c^2$                                                                                      | 0.29           | 0.1          | 0.05           | 0.04           | 0.07           | 0.09           |
| Plasterboard on frame, 9.5 mm boards, 10 cm empty cavity <sup>23,9</sup>                                                                                | 0.11           | 0.13         | 0.05           | 0.03           | 0.02           | 0.03           |
| Plasterboard on frame, 9.5 mm boards, 10 cm cavity filled with mineral wool <sup>23,9</sup>                                                             | 0.28           | 0.14         | 0.09           | 0.06           | 0.05           | 0.05           |
| Plasterboard on frame, 13 mm boards, 10 cm<br>empty cavity <sup>23,9</sup>                                                                              | 0.08           | 0.11         | 0.05           | 0.03           | 0.02           | 0.03           |
| Plasterboard on frame, 13 mm boards, 10 cm                                                                                                              | 0.30           | 0.12         | 0.08           | 0.06           | 0.06           | 0.05           |
| cavity filled with mineral wool <sup>23,9</sup><br>2×13 mm plasterboard on steel frame, 5 cm<br>mineral wool in cavity, surface painted <sup>12,9</sup> | 0.15           | 0.10         | 0.06           | 0.04           | 0.04           | 0.05           |
| Glazing                                                                                                                                                 |                |              |                |                |                |                |
| Glass, ordinary window glass <sup>2,10</sup>                                                                                                            | 0.35           | 0.25         | 0.18           | 0.12           | 0.07           | 0.04           |
| Single pane of glass, 3–4 mm <sup>6</sup>                                                                                                               | 0.2            | 0.15         | 0.1            | 0.07           | 0.05           | 0.05           |
| Single pane of glass, >4 mm <sup>6</sup>                                                                                                                | 0.1            | 0.07         | 0.04           | 0.03           | 0.02           | 0.02           |
| Single pane of glass, 3 mm <sup>23,9</sup>                                                                                                              | 0.08           | 0.04         | 0.03           | 0.03           | 0.02           | 0.02           |
| Double glazing, 2–3 mm glass, 1 cm gap <sup>8,9</sup>                                                                                                   | 0.10           | 0.07         | 0.05           | 0.03           | 0.02           | 0.02           |
| Double glazing, 2–3 mm glass, >3 cm gap <sup>23,9</sup>                                                                                                 | 0.15           | 0.05         | 0.03           | 0.03           | 0.02           | 0.02           |
| Glass, large panes, heavy glass <sup>2,5,13</sup>                                                                                                       | 0.18           | 0.06         | 0.04           | 0.03           | 0.02           | 0.02           |
| Wools and foam                                                                                                                                          |                | 0.00         |                |                |                |                |
| 25 mm fibreglass, rigid backing <sup>24</sup>                                                                                                           | 0.08           | 0.25         | 0.45           | 0.75           | 0.75           | 0.65           |
| 2.54 cm fibreglass, 24 to 48 kg/m <sup><math>32</math></sup>                                                                                            | 0.08           | 0.25         | 0.65           | 0.85           | 0.8            | 0.75           |
| 2.5 cm fibreglass, 2.5 cm airspace <sup>2</sup>                                                                                                         | 0.15           | 0.55         | 0.8            | 0.9            | 0.85           | 0.8            |
| 5 cm fibreglass, rigid backing <sup>24</sup>                                                                                                            | 0.21           | 0.50         | 0.75           | 0.90           | 0.85           | 0.80           |
| 7.5 cm fibreglass, rigid backing <sup>24</sup>                                                                                                          | 0.35           | 0.65         | $0.80 \\ 0.95$ | $0.90 \\ 1.00$ | $0.85 \\ 0.95$ | $0.80 \\ 0.85$ |
| 10 cm fibreglass, rigid backing <sup>24</sup><br>5 cm mineral wool (40 kg/m <sup>3</sup> ), glued to wall,                                              | $0.45 \\ 0.15$ | 0.90<br>0.70 | 0.93           | 0.60           | 0.95           | 0.85           |
| untreated surface <sup>8,9</sup>                                                                                                                        | 0.15           | 0.70         | 0.00           | 0.00           | 0.05           | 0.90           |
| 5 cm mineral wool (40 kg/m <sup>3</sup> ), glued to wall,                                                                                               | 0.15           | 0.70         | 0.60           | 0.60           | 0.75           | 0.75           |
| surface sprayed with thin plastic solution <sup>8,9</sup>                                                                                               |                |              |                |                |                |                |
| 5 cm mineral wool (70 kg/m <sup>3</sup> ) 30 cm in front of wall <sup>8,9</sup>                                                                         | 0.70           | 0.45         | 0.65           | 0.60           | 0.75           | 0.65           |
| 5 cm wood-wool set in mortar <sup>8,9</sup>                                                                                                             | 0.08           | 0.17         | 0.35           | 0.45           | 0.65           | 0.65           |
| 5.1 cm fibreglass, panels with plastic sheet                                                                                                            | 0.33           | 0.79         | 0.99           | 0.91           | 0.76           | 0.64           |
| wrapping and perforated metal facing <sup>2</sup>                                                                                                       |                |              |                |                |                |                |
| 5.1 cm fibreglass, 24–48 kg/m <sup>32</sup>                                                                                                             | 0.17           | 0.55         | 0.8            | 0.9            | 0.85           | 0.8            |
| Acoustic tile, 1.27 cm thick <sup>5</sup>                                                                                                               | 0.07           | 0.21         | 0.66           | 0.75           | 0.62           | 0.49           |
| Acoustic tile, 1.9 cm thick <sup>5</sup>                                                                                                                | 0.09           | 0.28         | 0.78           | 0.84           | 0.73           | 0.64           |
| Polyurethane foam, 2.5 cm thick                                                                                                                         | 0.16           | 0.25         | 0.45           | 0.84           | 0.97           | 0.87           |
| Thermafleece, sheep wool absorbent 100 mm thick <sup>25</sup>                                                                                           | 0.47           | 0.86         | 1.00           | 0.94           | 0.96           | 1.02           |




(continued)



#### **SOUND ABORPTION**

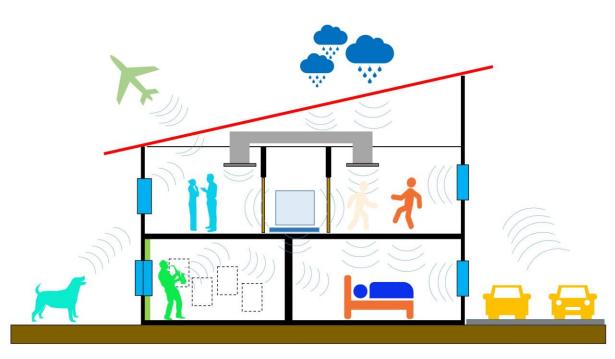
The energy loss at boundary reflection





# **BUILDING ACOUSTICS**




## **BUILDING ACOUSTICS**

The science of controlling <u>noise</u> in buildings.

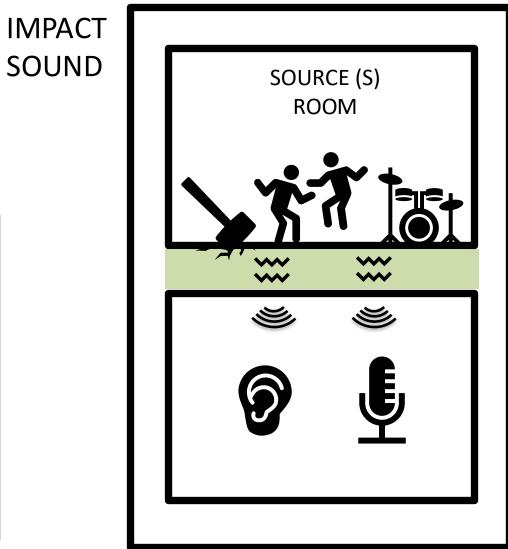
#### NOISE = UNWANTED SOUND

Main topics of building acoustics:

- Limit noise <u>transmission</u> from one space to another and from the external environment.
- Limit the noise from <u>machinery</u> and equipment.



[4] https://commons.wikimedia.org/wiki/File:Building\_Acoustics.jpg




### SOUND INSULATION

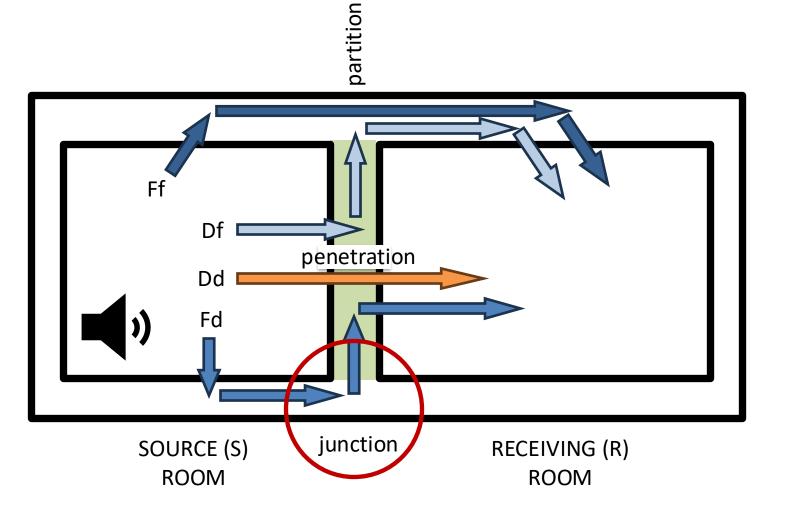
#### Sound generation principles

#### AIRBORNE SOUND

| SOURCE (S) | RECEIVING (R) |
|------------|---------------|
| ROOM       | ROOM          |



**RECEIVING (R)** ROOM




## SOUND INSULATION

#### Sound transmission paths

- Direct

- Flanking





# LIVE EXPERIMENT